ATEX Robotic News
March 12, 2012 19:42:36
NASA Plans To Launch 5 Rockets Minutes Apart
By Karen C. Fox NASA Goddard Space Flight Center

 GREENBELT, Md - High in the sky, 60 to 65 miles above Earth's surface, winds rush through a little understood region of Earth's atmosphere at speeds of 200 to 300 miles per hour. Lower than a typical satellite's orbit, higher than where most planes fly, this upper atmosphere jet stream makes a perfect target for a particular kind of scientific experiment: the sounding rocket. Some 35 to 40 feet long, sounding rockets shoot up into the sky for short journeys of eight to ten minutes, allowing scientists to probe difficult-to-reach layers of the atmosphere.
 

In March, NASA will launch five such rockets in approximately five minutes to study these high-altitude winds and their intimate connection to the complicated electrical current patterns that surround Earth. First noticed in the 1960s, the winds in this jet stream shouldn't be confused with the lower jet stream located around 30,000 feet, through which passenger jets fly and which is reported in weather forecasts. This rocket experiment is designed to gain a better understanding of the high-altitude winds and help scientists better model the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The experiment will also help explain how the effects of atmospheric disturbances in one part of the globe can be transported to other parts of the globe in a mere day or two.

"This area shows winds much larger than expected," says Miguel Larsen, a space scientist at Clemson University who is the principal investigator for these five rockets, known as the Anomalous Transport Rocket Experiment (ATREX). "We don't yet know what we're going to see, but there is definitely something unusual going on. ATREX will help us understand the big question about what is driving these fast winds."

Determining what drives these winds requires precise understanding of the way the winds move and what kind of turbulence they show. To get an idea of the task at hand, imagine mapping not just the ups and downs of ocean waves but the attendant surf, undertow, and tides, all from 60 miles away and in only 20 minutes. To accomplish this, the five sounding rockets will launch from NASA's Wallops Flight Facility in Virginia releasing a chemical tracer into the air. The chemical – a substance called trimethyl aluminum (TMA) -- forms milky, white clouds that allow those on the ground to "see" the winds in space and track them with cameras. In addition, two of the rockets will have instrumented payloads to measure pressure and temperature in the atmosphere.

The rockets will be launched on a clear night within a period of minutes, so the trails can all be seen at the same time. The trimethyl aluminum will then be released in space out over the Atlantic Ocean at altitudes from 50 to 90 miles. The cloud tracers will last for up to 20 minutes and will be visible in the mid-Atlantic region, and along the east coast of the United States from parts of South Carolina to New Jersey.

"People have launched single rockets before," says Larsen. "But the key here is that we're extending the range of measurements to many hundreds of miles. The furthest rocket will make it half way to Bermuda."

Sounding rockets are usually launched one or two at a time, so launching five at once will call for specific timing and direction to gather the required data. The rockets must be launched on a clear night between March 14 and April 3. Scientists will then use special camera equipment to track the five clouds and measure how quickly they move away from each other. They can then plug this information into equations that will describe what kind of turbulence exists in the winds.

One possible kind of turbulence is called three-dimensional turbulence, turbulence much like what one sees flowing down a river and swirling around rocks or in gusting winds on Earth. If this is seen, it would suggest the winds move with laws of motion similar to those governing small-scale waves in water. Such waves might be driven by heat in the atmosphere that varies in the course of a day. This would jibe with one of the original theories for how the winds are created, and indeed there are those who think of this region as a kind of atmospheric "surf zone" in the sky. Another view is that the winds at that height are too fast to jibe with this model. Moreover, man-made tracers, such as Space Shuttle exhaust, do not break up and dissipate as one might expect from such turbulence, but remain remarkably coherent.

On the other hand, if ATREX sees winds that exhibit what's called two-dimensional turbulence, this would support a model based on a more directed, jet stream flow.

"In 3-D turbulence, one sees complicated movement," says Larsen. "But there's a tendency for 2-D turbulence to behave almost in the opposite manner – the airflow coalesces into single streams, like a jet stream."

This kind of airflow would also be strongly enhanced by the combination of electrical currents in the region and the rate of the Earth's rotation. Together, this connection might result in the fast, coherent streams of air so far observed.

The rockets being used for the mission are two Terrier-Improved Malemutes, two Terrier-Improved Orions and one Terrier-Oriole. In order for the launches to occur, clear skies are required at three special camera sites located along the coast in Virginia, North Carolina and New Jersey.

NASA has used TMA for decades as part of rocket studies from sites worldwide to study the near-space environment. TMA burns slowly and produces visible light that can be tracked visually and with special camera equipment.

The products of the reaction when TMA is exposed to air or water are aluminum oxide, carbon dioxide and water vapor. Aluminum oxides are used to combat heartburn and to purify drinking water. Also, all three products occur naturally in the atmosphere. The TMA poses no threat to the public during preparation on the ground or during the release in space.

The red dots over the water show where ATREX will deploy chemical tracers to watch how super fast winds move some 60 miles up in the atmosphere. While there are only five rockets, two will deploy two sets of tracers, resulting in seven clouds. Only six dots appear in this image, since two will be deployed at the left-most red/green dot, which represents Wallops. Three cameras will track the cloud tracers – one at Wallops and two located at the green dots. Credit: NASA/Goddard Space Flight Center

 

 http://www.nasa.gov/mission_pages/sunearth/missions/atrex.html

 

More Interactive Photography
Gale CratorInterActive First look crisp look around Gale Crator This 360-degree, full-resolution panorama from NASA's Curiosity rover shows the area all around...
Endeavour nose gear in OPFInterActive Endeavour nose gear in OPF This was shot from forward and underneath Space Shuttle Endeavour in the Orbiter Processing...
Endeavor engine compartmentInterActive Endeavor engine compartment View into the Space Shuttle's engine compartment with the three main engines removed.
Endeavor engine compartmentInterActive Endeavor engine compartment View into the Space Shuttle's engine compartment with the three main engines removed.
Endeavour Cargo BayInterActive Endeavour Cargo Bay This image was shot from the forward end of Space Shuttle Endeavour's cargo ba as it sits in...
Interior view of the Space Shuttle Endeavour forward flight deck. InterActive Interior view of the Space Shuttle Endeavour forward flight deck. Interior view of the Space Shuttle Endeavour aft flight deck.
Endeavour Forward Flight DeckInterActive Endeavour Forward Flight Deck Interior view of the Space Shuttle Endeavour forward flight deck.
Atlas V with Mars Science Laboratory payloadInterActive Atlas V with Mars Science Laboratory payload The rover Curiosity will carry the biggest, most advanced suite of instruments for scientific...
Curiosity roverInterActive Curiosity rover NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or...
Curiosity roverInterActive Curiosity rover NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or...
Gravity Recovery and Interior LaboratoryInterActive GRAIL The Gravity Recovery and Interior Laboratory mission's primary science objectives will be to...
Atlas V AV-029InterActive Atlas V AV-029 ULA Atlas V number AV-029 reaches launch pad on August 4th, 2011. In less than 1 day this Atlas...
Atlas V up closeInterActive Atlas V up close Get to know the Atlas V up close. Explore the rivets in this 74.62 megapixel image of the Atlas...
JUNO Atlas VInterActive JUNO Atlas V ULA Atlas V with the JUNO probe sitting atop at Cape Canaveral Air Force Station is ready for...
Atlantis at wheels stop on runway 15InterActive Atlantis on runway Space Shuttle Atlantis returned to Earth in the predawn hours of July 21st, 2011. Marking the...
Atlantis at wheels stop on runway 15InterActive Atlantis at wheels stop on runway 15 Space Shuttle Atlantis returned to Earth in the predawn hours of July 21st, 2011. Marking the...
Atlantis and towerInterActive Atlantis and tower Space shuttle Atlantis waits to receive payload for the final space shuttle mission STS-135,...
Atlantis payload preparationsInterActive Atlantis payload preparations Space shuttle Atlantis at pad 39A. The payload canister can be seen lifted in to position to...
Walk with the astronautsInterActive Walk with the astronauts A view of the 195ft level of the fixed service structure. This where the astronauts arrive at...
Last Space Shuttle prepares for launchInterActive Last Space Shuttle prepares for launch A close in look at space shuttle Atlantis on June 17th. Launch preparations are on going for...
The last space shuttle to be on the launch padInterActive The last space shuttle to be on the launch pad Space shuttle Atlantis, the last space shuttle to flight begins launch prepartions at pad 39A...
Last space shuttle arrives at launch padInterActive Last space shuttle arrives at launch pad Space shuttle Atlantis is seen here from the top of the rotating service structure the moring...
The last space shuttle has left the buildingInterActive The last space shuttle has left the building Space shuttle Atlantis rolls out of the Vehicle Assembly Building for the last time on the...
Space Shuttle Atlantis prepared to rollout to pad   InterActive Space Shuttle Atlantis prepared to rollout to pad Space shuttle Atlantis complete with the solid rocket boosters and external tank that will...
HiRes Atlantis hanging in VABInterActive HiRes Atlantis hanging in VAB HiRes image of Space Shuttle Atlantis hanging in the Vehical Assembly Building. This shot was...
Atlantis vertical from VAB Level 5InterActive Atlantis vertical from VAB Level 5 Space Shuttle Atlantis after being lifted into the verticle position before being mated to the...
Atlantis verticalInterActive Atlantis vertical Space Shuttle Atlantis hangs vertical before removing the rear hoist and lifting it for the...
Atlantis rolling verticalInterActive Atlantis rolling vertical Here Space Shuttle Atlantis is almost vertical being positioned to soon be mated to the...
Atlantis hanging in VABInterActive Atlantis hanging in VAB Space Shuttle Atlantis is seen here hanging about 10 feet above the VAB floor. It has justed...
Endeavour at nightInterActive Endeavour at night Space shuttle Endeavour seen here at night as launch preparation continue for the first launch...
Atlantis rolling over to VAB for final missionInterActive Atlantis rolling over to VAB for final mission Space Shuttle Atlantis rolling over the VAB for the last time. Atlantis is scheduled to be the...
Atlantis outside VAB for employee photosInterActive Atlantis outside VAB for employee photos Space shuttle Atlantis, the last space shuttle, pauses during rollover from the OPF to the VAB...
Hi Resolution image of the last space shuttleInterActive Hi Resolution image of the last space shuttle Hi Resolution composit image of the last space shuttle, Atlantis, as it sits atop the transport...
Atlantis in the VABInterActive Atlantis in the VAB Nice 360 degree view of the VAB with Atlantis being preped for the Lift and Mate procedure
Atlantis on the sled in VABInterActive Atlantis on the sled in VAB Explore the VAB with Space Shuttle Atlantis on the sled after rollover to the VAB jst before...
Atlantis being attached to slingInterActive Atlantis being attached to sling Full 360 degree panorama from inside the VAB as Space Shuttle Atlantis is attached to the sling...
Endeavour after RSS retractionInterActive Endeavour after RSS retraction Hi-Res image of Space Shuttle Endeavour on the launch pad 39A minutes after the RSS was...
The Mound STS-134 4/29 AttemptInterActive The Mound STS-134 4/29 Attempt This a 360 degree panorama from the mound of the KSC media center. This was the scence about an...
Alpha Magnetic Spectrometer (AMS)InterActive Alpha Magnetic Spectrometer (AMS) The Alpha Magnetic Spectrometer-2, a particle physics detector designed to search for various...
AMS in the SSPFInterActive AMS in the SSPF The Alpha Magnetic Spectrometer-2, a particle physics detector designed to search for various...
Here is Space Shuttle Endeavour just after sunriseInterActive Here is Space Shuttle Endeavour just after sunrise Here is Space Shuttle Endeavour just after sunrise the morning it arrived from the VAB. How...
Endeavour in the VABInterActive Endeavour in the VAB Space Shuttle Endeavour sitting stacked and ready atop the crawler to rollout the launch pad.
Endeavour in the VABInterActive Endeavour in the VAB Space Shuttle Endeavour sitting stacked and ready atop the crawler to rollout the launch pad.
Space Shuttle Discovery final towoverInterActive Space Shuttle Discovery final towover View of Space Shuttle Discovery 4 hours after returning to Earth for the last time. Discovery...
Space Shuttle Discovery Final LaunchInterActive Space Shuttle Discovery Final Launch This a 360 degree panorama taken 3 mile from the launch pad capturing the final lift off of...
Space shuttle Discovery final launchInterActive Space shuttle Discovery final launch This a 360 degree panorama taken 3 mile from the launch pad capturing the final lift off of...
Discovery at NightInterActive Discovery at Night This a panorama of Space Shuttle Discovery shortly after RSS retraction on 11/3/2010 preparing...
GRIP DC-8 PanoramaInterActive GRIP DC-8 Panorama Interior of forward section of NASA GRIP aircraft while configured for studding hurricane...
GRIP DC-8 InteriorInterActive GRIP DC-8 Interior Interior of forward section of NASA GRIP aircraft while configured for studding hurricane...
NASA GRIP DC-8InterActive NASA GRIP DC-8 The NASA DC-8 is a four-engine jet transport that has been highly modified to support the...
Endeavour on padInterActive Endeavour ready for launch HiRes image of Endeavour at Pad 39A
AMS-2 Antimatter TelescopeInterActive AMS-2 Antimatter Telescope Explore the SSPF and ESA's Antimatter Telescope. 360 rotating,zoomable Panorama!
Spectacular ultra hi-rez interactive shot of the Space Shuttle Endeavour on the launch pad for the last timeInterActive Explore LC-39A !! Spectacular ultra hi-rez interactive shot of the Space Shuttle Endeavour on the launch pad for...